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General anesthetics have revolutionized medicine by facilitating
invasive procedures, and have thus become essential drugs.
However, detailed understanding of their molecular mechanisms
remains elusive. A mechanism proposed over a century ago
involving unspecified interactions with the lipid bilayer known
as the unitary lipid-based hypothesis of anesthetic action, has
been challenged by evidence for direct anesthetic interactions
with a range of proteins, including transmembrane ion channels.
Anesthetic concentrations in the membrane are high (10–100 mM),
however, and there is no experimental evidence ruling out a role
for the lipid bilayer in their ion channel effects. A recent hypoth-
esis proposes that anesthetic-induced changes in ion channel func-
tion result from changes in bilayer lateral pressure that arise from
partitioning of anesthetics into the bilayer. We examined the ef-
fects of a broad range of chemically diverse general anesthetics
and related nonanesthetics on lipid bilayer properties using an
established fluorescence assay that senses drug-induced changes
in lipid bilayer properties. None of the compounds tested altered
bilayer properties sufficiently to produce meaningful changes in
ion channel function at clinically relevant concentrations. Even
supra-anesthetic concentrations caused minimal bilayer effects, al-
though much higher (toxic) concentrations of certain anesthetic
agents did alter lipid bilayer properties. We conclude that general
anesthetics have minimal effects on bilayer properties at clinically
relevant concentrations, indicating that anesthetic effects on ion
channel function are not bilayer-mediated but rather involve di-
rect protein interactions.

anesthetic mechanisms | gramicidin channel | bilayer modification |
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General anesthetics are essential drugs in modern medicine,
yet their molecular mechanisms remain poorly understood,

as it is unclear whether or not general anesthetics exert their
effects by altering lipid bilayer properties. The Meyer-Overton
correlation of anesthetic potency with lipophilicity, which does
not identify a specific mechanism, led to lipid bilayer-based
proposals for the mechanisms of general anesthesia that domi-
nated the field until challenged in the 1970s (1–3). The seminal
work of Franks and Lieb led them to conclude that “the lipid
bilayer alone is not the anaesthetic site” (2). They subsequently
showed that the Meyer-Overton correlation was preserved for
inhibition of firefly luciferase, a soluble lipid-free model protein
(4). This led to a search for critical protein targets for general
anesthetics, which resulted in the identification of a number of
plausible voltage-gated and ligand-gated ion channel targets (5,
6). The possible involvement of the lipid bilayer in the effects of
lipophilic anesthetics on membrane proteins has not been ex-
cluded, however. Anesthetic concentrations in biological mem-
branes are in the 10–100 mM range, making it difficult to exclude
bilayer-mediated effects. Indeed, Cantor and colleagues have
developed a modern, mechanistic lipid bilayer-based hypothesis,
based on changes in the bilayer lateral pressure profile, to ex-
plain how general anesthetics could alter the function of mem-
brane proteins (7, 8). An alternative bilayer-based mechanism

for general anesthesia has been proposed based on anesthetic-
induced changes in membrane domain organization (9, 10).
The concentrations of anesthetics at which effects are ob-

served are critical for interpreting experimental data obtained
in vitro. General anesthetics clearly alter lipid bilayer properties
at high concentrations, which are irrelevant for clinical anes-
thesia but could contribute to toxicity at supratherapeutic doses
(2, 3). This concentration dependence has clinical implications
for the dose-dependent effects of general anesthetics: at low
doses, the commonly used volatile anesthetic isoflurane causes
only amnesia (11); at medium (therapeutic) doses it produces the
desired clinical endpoint of hypnosis and immobility (5, 12); and
at even higher supratherapeutic (toxic) doses it causes undesir-
able side effects such as cardiovascular and respiratory de-
pression (13). Whereas isoflurane at anesthetic concentrations
alters ion channel function with no discernible effect on lipid
bilayer properties (14), it does alter lipid bilayer properties at
supratherapeutic concentrations, supporting the idea that the
lipid bilayer is not an important target for its therapeutic effects.
The generality of this observation to other anesthetics has not
been established, however.
To test the hypothesis that general anesthetics at clinically

relevant concentrations do not produce marked changes in lipid
bilayer properties, we tested a chemically and pharmacologically
diverse panel of representative anesthetics using a functional
assay sensitive to alterations in lipid bilayer properties. Our re-
sults show that general anesthetics have minimal, if any, effects
on lipid bilayer properties at clinical concentrations. Thus,
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general anesthetics effects on ion channel function involve direct
rather than indirect bilayer mediated effects.

Results
The bilayer-modifying potency of anesthetics were examined
using a fluorescence quench method (14, 15). Fig. S1 describes
the conceptual basis for these experiments, and Fig. S2 shows
fluorescence quench traces for a representative experiment with
diethyl ether. The results for a group of chemically and phar-
macologically diverse anesthetics are summarized in Fig. 1. In-
haled anesthetics, which are delivered as gases, are grouped as
ethers or alkanes (Fig. 1 A and B). We also included the non-
anesthetic compounds flurothyl and F6, which are predicted by
the Meyer-Overton correlation to be anesthetics based on their
lipid solubility, yet they do not produce immobilization in re-
sponse to a painful stimulus (16). We tested inhaled agents at
clinically relevant concentrations of 1 MAC (minimum alveolar
concentration, defined as the concentration that prevents
movement in response to a painful stimulus in 50% of subjects,
comparable to EC50) and 2 MAC, as well as a supratherapeutic
(toxic) concentration (4 MAC). i.v. anesthetics represent a third
group (Fig. 1C), the effects of which were tested at their EC50 for
immobilization and multiples thereof.
At clinical concentrations (1 MAC), most of the anesthetics

tested did not produce any effects on lipid bilayer properties de-
tectable in the gramicidin-based fluorescent assay (Fig. 1 B and C).
The ethers and F3 altered bulk lipid bilayer properties sufficiently
to produce up to a 20% change in quench rate (Fig. 1 A and C),
which produces minimal changes in membrane protein function
(14), see also Fig. 2. The anesthetic ethers, F3, and the i.v. anes-
thetic etomidate increased the quench rate by > 50% at higher
concentrations, indicating that they can alter lipid bilayer

properties at these clinically irrelevant concentrations (see
also (2, 3)). The nonanesthetics flurothyl and F6 did not signif-
icantly alter lipid bilayer properties.
The fluorescence experiments in single-component (1,2-

dierucoyl-sn-glycero-3-phosphocholine, DC22:1PC) large uni-
lamellar vesicles (LUVs) are exquisitely sensitive to changes in
lipid bilayer elastic properties due to the large hydrophobic
mismatch between channel length (∼2.2 nm (17, 18)) and bi-
layer thickness (∼3.4 nm (19, 20)). Cellular membranes, how-
ever, are complex mixtures of many lipid species with lateral
domain organization (21–23), and Veatch, Machta and col-
leagues (9, 10) have proposed that general anesthetics act by
altering membrane domain organization. To explore this
question, we also performed experiments with LUVs formed
using an equimolar mixture of 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DC18:1PC), cholesterol and brain sphingomye-
lin. This mixture is known to form membranes with immiscible
liquid domains (24, 25).
None of the anesthetics tested in this system (isoflurane,

halothane, ketamine and propofol) affected the quench rate
at anesthetic or supratherapeutic concentrations (Fig. 1D),
indicating that the anesthetics are unlikely to produce major
changes in membrane domain organization under our exper-
imental conditions. Experiments in planar bilayers, formed
from the same “raft-forming” lipid mixture as was used here
provide evidence for a single type of kinetically homogenous
channel (26), which presumably form in the thinner, less or-
dered Ld phase. “Conventional” bilayer-modifying molecules,
like alcohols, Triton X-100 and capsaicin, did produce in-
creases in quench rates (Fig. 1D), albeit only by around 20–
35% of the rates observed in DC22:1PC LUVs (14, 27, 28).
(Fig. S3 shows amphiphile-induced changes in quench rates in
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Fig. 1. Effects of general anesthetics on lipid bilayer properties. Normalized fluorescence quench rates of inhaled ether (A) and alkane (B) compounds at
concentrations of ∼1, 2, and 4 MAC (minimum alveolar concentration, defined as the concentration that prevents movement in response to a painful stimulus
in 50% of subjects, comparable to EC50), and of i.v. anesthetics (C) at 10–500 μM, using single-component lipid bilayer vesicles. White columns represent
compounds that do not cause immobility (nonanesthetics*) that were tested at concentrations predicted to produce anesthesia based on their lipid solubility.
A normalized quench rate (Ratedrug/Ratecontrol) of 1.0 indicates no significant effect on bulk lipid bilayer properties. Ethanol [EtOH] (gray columns), a known
bilayer-modifier at 5% (∼0.86 M), was included as a positive control. Data are expressed as mean ± SD, n = 3–5. [10 and 20 μM values for propofol are from
(102).]. (D) Effects of anesthetics on lipid bilayer properties in multicomponent bilayer vesicles. Identical experiments (as in A–C) were performed using LUVs
composed of an equimolar mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DC18:1PC), cholesterol and brain sphingomyelin. Normalized fluorescence
quench rates of select anesthetics (colored columns) representing each group at both low and high concentrations (1 or 4 MAC for isoflurane [Iso] and
halothane [Halo]; 10 or 500 μM for ketamine [Ket]; 10 or 100 μM for propofol [Prop]). Conventional bilayer-modifying molecules (gray columns), such as 30 μM
Triton X-100 [TX], 100 μM capsaicin [Caps] and alcohols (1% 1-butanol [BtOH] or 5% ethanol [EtOH]), were included as positive controls, which altered lipid
bilayer properties even at low concentrations. Data are expressed as mean ± SD, n = 3–5.
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single-component (DC22:1PC) and multicomponent LUVs.)
This presumably reflects the smaller hydrophobic thickness of
the DC18:1PC-rich liquid disordered (Ld) phase, as experi-
ments with DC18:1PC LUVs show that amphiphiles produce
little, if any, changes in fluorescence quench rates (29). We
therefore do not observe qualitatively different results from
experiments with single- and multicomponent bilayers, con-
firming the lack of any anesthetic membrane effects at clinical
relevant concentrations.

Discussion
Our key finding is that a chemically and pharmacologically di-
verse panel of general anesthetics has no detectable effects on
lipid bilayer properties at clinically relevant anesthetic concentrations.
These results do not support a lipid bilayer-based mechanism for
anesthetic effects on membrane proteins, but rather provide
strong support for the hypothesis that general anesthetics exert
their desired clinical effects through direct interactions with
target membrane proteins.

Power of the Gramicidin-Based Approach.Our results show that the
general anesthetics tested do not alter the gramicidin mono-
mer↔dimer equilibrium. The experiments in single-component
bilayers lend themselves to unambiguous interpretation: anesthetics
do not alter the energetic cost of the local bilayer deformation,
which is the bilayer contribution to the free energy of dimerization
(ΔGM→D

bilayer, where M denotes the monomer and D the dimer)
associated with forming the bilayer-spanning dimer (30–32).
ΔGM→D

bilayer varies as a function changes in bilayer thickness, intrinsic
curvature, and the elastic bending and compression moduli, which
in turn are determined by lateral interactions among membrane
lipids (33–35). Since gramicidin channel function is altered by
changes in lateral pressure (36), the lack of effects on gramicidin
channel function indicates that general anesthetics have minimal, if
any, effects on lipid bilayer elastic properties and lateral pressure.
These results do not exclude alterations in bilayer fluidity, i.e.,

changes in the lateral or rotational diffusion coefficients in the
membrane. Such changes would have equal effects on the rate
constants for channel formation and dissociation and therefore
would not alter the monomer↔dimer equilibrium (nor the
fluorescence quench rate) (37, 38). Similarly, changes in fluidity
do not provide a causal mechanism for the bilayer regulation of
membrane protein function (37, 39). Nor do our results with
single-component DC22:1PC LUVs exclude changes in domain
organization of multicomponent membranes, which could alter
the lateral organization of channels in cell membranes (40, 41).
We therefore did additional experiments using LUVs prepared
with an equimolar mixture of DC18:1PC, cholesterol and brain
sphingomyelin, a generic raft-forming mixture (24, 25). In this
system, the anesthetics tested were as inert as in the single-
component LUVs, if not more so, whereas conventional bilayer-
modifying compounds (ethanol, 1-butanol, Triton X-100 and
capsaicin) increased the quench rate. Ethanol, 1-butanol, Triton
X-100 and capsaicin also were less potent than in DC22:1PC
LUVs, which we ascribe to a lesser hydrophobic thickness of the
Ld domains in LUVs formed by the multicomponent mixture,
which also could account for the lesser effect of isoflurane
(4 MAC) and ketamine (500 μM) in the that system. The absence
of anesthetic effects suggests that anesthetics do not alter domain
organization under our experimental conditions.

Energetic Coupling Between Membrane Proteins and Host Bilayer.
Membrane proteins are energetically coupled to their host bi-
layer through hydrophobic interactions (18, 42, 43). Changes
in lipid bilayer properties can alter the equilibrium distribution
among membrane protein conformational states and thus pro-
tein function (44–47) by altering the lipid bilayer contribution to
the free energy difference for membrane protein conformational
changes (e.g., between conformation I and II, ΔGI→II

bilayer (30)).
This energetic coupling forms the conceptual framework for how
drug-induced changes in bilayer properties can lead to changes in
membrane protein function.
The classic studies of Meyer and Overton (48, 49) on the di-

rect correlation between drug lipophilicity and anesthetic po-
tency in vivo led to early lipid-based hypotheses of mechanisms
of anesthesia. A number of compounds, however, do not con-
form to the predictions of the Meyer-Overton correlation: ste-
reoisomers of anesthetics, for example, can have different anesthetic
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Fig. 2. Effects of general anesthetics and other amphiphiles on ion channel
function compared with their lipid bilayer modifying properties. (A) Plot of
anesthetic- and amphiphile-induced changes in specific ion channel function
(as a percentage of potentiation or inhibition of ionic current) against changes
in lipid bilayer properties measured (or extrapolated) from the fluorescence
quench rate in single component DC22:1PC LUVs. The relation between bilayer-
modifying effect and alteration of ion-channel function by five representative
anesthetics (isoflurane [Iso], halothane [Halo], ketamine [Ket], propofol
[Prop], cyclopropane [Cyclo], colored symbols) and other amphiphiles (Triton
X-100 [TX100], β-octyl-glucoside [βOG], capsaicin [Caps], docosahexaenoic acid
[DHA], gray symbols) is based on results from this study and from published
studies on ion channels (30, 67, 75, 81, 98, 103–122). The horizontal dashed line
denotes no change in ion-channel current, and the vertical dashed line shows
the threshold for a significant effect on bulk lipid-bilayer properties. All five
anesthetics have strong ion channel effects at concentrations at which they
have minimal or no bilayer-modifying effects. Gray symbols represent am-
phiphiles known to strongly alter lipid bilayer properties. A few data points
for isoflurane (Iso-Nav1.4, Iso-Glycine and Iso-TRESK, denoted with asterisk)
do reach or cross the vertical border, but these bilayer-modifying effects
only occur at very high, supratherapeutic concentrations (>4 MAC). (B)
Corresponding plot using the changes in fluorescence quench rates for
multicomponent lipid bilayer LUVs for isoflurane, halothane, ketamine and
propofol (abbreviation and color code as in A), as well as the known bilayer-
modifying amphiphiles Triton X-100 and capsaicin (abbreviation as in A;
gray symbols). In these multicomponent lipid bilayer experiments, the
vertical alignment of the data (corresponding to anesthetics, colored sym-
bols) is much more pronounced compared with the data for single com-
ponent LUVs (A), confirming that clinical concentrations of anesthetics do
not have any lipid bilayer altering effects.
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potencies (50, 51) despite their identical partition coefficients (e.g.,
ref. 52). The fluorinated nonanesthetics (flurothyl and F6), despite
being very lipid soluble and predicted to be anesthetics, do not
produce anesthesia in vivo (16) or altered lipid bilayer proper-
ties at their predicted anesthetic concentrations (Fig. 1 A and
B). The chemically similar anesthetic F3 has minimal bilayer
effects at anesthetic concentrations, though it is bilayer-active at
higher concentrations. These differences in bilayer-modifying
potencies could reflect agent-specific distributions of the dif-
ferent anesthetic and nonanesthetic agents within the bilayer.
Anesthetic compounds tend to localize within the hydrocarbon
core close to the membrane/solution interface based on NMR
(53–55) and molecular dynamics (56) studies in contrast to the
nonanesthetics F6 and hexafluoroethane, which localize within
the midbilayer hydrocarbon core (53, 55, 57).
Such differential bilayer localizations could in principle ex-

plain the different effects of F3 and F6 within the framework of
the mechanistic hypothesis of anesthetic effects based on
changes in membrane intrinsic curvature (44) or lateral pressure
profile (7). This mechanism does not invoke direct drug binding
to “target” proteins (8). Rather, it is proposed that compounds
accumulate at the aqueous-bilayer interface affecting bilayer
properties and thereby modulating membrane protein activity.
This hypothesis, however, is difficult to reconcile with the lack of
changes in gramicidin channel function at clinically relevant
concentrations (14), as well as the observation that the partition
coefficient of halothane does not vary as a function of aqueous
concentration or mole-fraction in the bilayer (58), a result that
excludes large changes in lateral pressure within the bilayer.

Membrane Proteins as Anesthetic Targets. The notion of the lipid
bilayer as the primary target for general anesthetic action was
challenged in the late 1970s (2, 3, 59, 60), which stimulated a
search for protein targets involved in producing anesthesia. In-
haled general anesthetics were known to bind to globular pro-
teins (61), and alter the function of cytosolic proteins (1, 62), and
many ion channels were also found to be affected by anesthetics
(63–65). Subsequent studies have identified potential protein
targets that include a range of ligand-gated ion channels such as
GABAA-receptors (66) and NMDA-type glutamate receptors
(67, 68), two-pore domain K+ channels (69, 70), and voltage-
gated Ca2+ (71, 72) and Na+ (14, 73) channels.
There is wide consensus that proteins are the most likely

targets for i.v. anesthetics. The i.v. anesthetics propofol, thio-
pental and etomidate produce their effects primarily through
potentiation of inhibitory GABAA receptors (74, 75), whereas
ketamine inhibits excitatory NMDA-type glutamate receptors
and HCN channels (76, 77). Point mutations of GABAA-recep-
tors that result in anesthetic insensitivity markedly reduce pro-
pofol and etomidate anesthesia in knock-in mice in vivo (78–80).
It remains unclear whether their effects at higher concentrations
are due solely to direct effects on non-GABAA proteins targets,
or involve contributions from the lipid bilayer, as has been
demonstrated for a number of other drugs (26, 28, 30, 81–83).
For volatile anesthetics, however, the evidence is not as clear.
Halogenated ether anesthetics, for example, fail to produce an-
esthetic resistance in knock-in mice with GABAA-receptors
engineered for resistance to these compounds – suggesting a role
for additional or alternate mechanisms, thus raising the question
of lipid bilayer contributions. Indeed the range of plausible
membrane protein anesthetic targets suggests that a shared (so-
called “unitary”) mechanism of action that could include alter-
ated membrane properties might be important for this drug class
(84, 85). It is therefore important to know if anesthetics at
clinically relevant concentrations alter lipid bilayer properties
sufficiently to produce changes in membrane protein function.

Anesthetic Effects on Membrane Protein Function Do Not Correlate
with Changes in Bilayer Properties.Membrane protein function can
be modulated by changes in lipid bilayer composition (86–90).
Similarly, membrane protein function is regulated by small,
membrane-active compounds at concentrations that also alter
lipid bilayer properties (26, 28, 30, 81–83, 91–98). It is therefore
important to examine changes in membrane protein function
in relation to bilayer-modifying effects for a wide range of
anesthetics, and thus test the generality of the observation that
fluorobenzene anesthetics and isoflurane do not affect bulk
membrane properties at clinically relevant concentrations (14).
To highlight the relationship between general anesthetic ef-

fects on specific membrane proteins and their lipid bilayer-
perturbing effects, we compared our lipid bilayer modification
results in LUVs prepared using either single component
DC22:1PC or a more complex multicomponent (i.e., ternary)
mixture, with published concentration-response studies of anes-
thetic effects on a variety of anesthetic-sensitive ion channels.
We then compared these results to those for conventional
bilayer-modifying compounds (Fig. 2).
It is evident that conventional amphiphiles alter ion channel

function at concentrations where they perturb lipid bilayer
properties (right two quadrants in Fig. 2A), which suggests that
they do so by altering lipid bilayer properties. In contrast, an-
esthetics do not alter lipid bilayer properties at clinically relevant
anesthetic concentrations (left two quadrants in Fig. 2A), and
there is no clear relation between bilayer-modifying and anes-
thetic potencies. At supratherapeutic and potentially toxic con-
centrations, anesthetics can alter lipid bilayer properties, as
illustrated by isoflurane effects on Nav1.4, glycine receptors and
TRESK (Fig. 2A, denoted with asterisk), in which isoflurane is a
bilayer modifier at concentrations above 4 MAC (14). These
bilayer effects, however, are unlikely to be relevant for desired
anesthetic effects.
The membrane mole-fractions of general anesthetics at

1 MAC (Table S1) are similar to the mole-fractions at which
many amphiphiles alter lipid bilayer properties (14, 26, 27, 30,
99, 100). In single-component bilayers, a conventional bilayer
modifier, Triton X-100 for example, produces a fourfold increase
in the fluorescence quench rate at 30 μM, corresponding to a
membrane mole-fraction of ∼0.1 (15). The modest membrane
effects of the inhaled anesthetics at 4 MAC, where (except for
F3) mole-fractions in the membrane are 0.1 or above, raises the
question of why are clinical anesthetics are so inert as lipid bi-
layer modifiers? Our results do not provide insight into this
question, but we note that anesthetics and their nonanesthetic
counterparts are located within the bilayer hydrophobic core,
with the anesthetics localizing closer to the bilayer/solution in-
terface than the nonanesthetics (53–57), whereas conventional
amphiphiles are anchored to the bilayer/solution interface (101).

Conclusions
We used a well-characterized model system to explore the
bilayer-modifying potencies of general anesthetics. Anesthetics
are weak bilayer modifiers at clinically relevant anesthetic con-
centrations, whether tested in bilayers formed by a single phos-
pholipid or by a multicomponent lipid mixture that is known to
exhibit domain immiscibility. Clinical anesthesia is therefore
unlikely to involve alterations in lipid bilayer properties. Our
results support the notion that general anesthesia involves spe-
cific anesthetic-membrane protein interactions, which in turn
alter central nervous system properties to produce the charac-
teristic features of general anesthesia.

Materials and Methods
Details are in SI Materials and Methods. Anesthetic and nonanesthetic so-
lutions were prepared as described (14), and their lipid bilayer perturbing
effects were tested using a gramicidin-based fluorescence assay (GBFA).
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Single component large unilamellar vesicles (LUVs) composed of 1,2-dierucoyl-
sn-glycero-3-phosphocholine (DC22:1PC) or multicomponent LUVs composed of
equimolar amounts of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DC18:1PC),
cholesterol and brain sphingomyelin were filled with the Tl+ quenchable flu-
orophore 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS). Changes in fluo-
rescence decay were measured using a stopped-flow spectrophotometer
followed by offline analysis as described (14, 15).
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